You are viewing docs on Elastic's new documentation system, currently in technical preview. For all other Elastic docs, visit elastic.co/guide.

Zeek

Collect logs from Zeek with Elastic Agent.

Version
2.24.1 (View all)
Compatible Kibana version(s)
8.12.0 or higher
Supported Serverless project types

Security
Observability
Subscription level
Basic
Level of support
Elastic

This is an integration for Zeek, which was formerly named Bro. Zeek is a passive, open-source network traffic analyzer. This integrations ingests the logs Zeek produces about the network traffic that it analyzes.

Zeek logs must be output in JSON format. This is normally done by appending the json-logs policy to your local.zeek file. Add this line to your local.zeek.

@load policy/tuning/json-logs.zeek

Compatibility

This module has been developed against Zeek 2.6.1, but is expected to work with other versions of Zeek.

Zeek requires a Unix-like platform, and it currently supports Linux, FreeBSD, and Mac OS X.

Logs

capture_loss

The capture_loss dataset collects the Zeek capture_loss.log file, which contains packet loss rate data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
tags
List of keywords used to tag each event.
keyword
zeek.capture_loss.acks
Total number of ACKs seen in the previous measurement interval.
integer
zeek.capture_loss.gaps
Number of missed ACKs from the previous measurement interval.
integer
zeek.capture_loss.peer
In the event that there are multiple Bro instances logging to the same host, this distinguishes each peer with its individual name.
keyword
zeek.capture_loss.percent_lost
Percentage of ACKs seen where the data being ACKed wasn't seen.
double
zeek.capture_loss.ts_delta
The time delay between this measurement and the last.
integer
zeek.session_id
A unique identifier of the session
keyword

connection

The connection dataset collects the Zeek conn.log file, which contains TCP/UDP/ICMP connection data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.bytes
Bytes sent from the destination to the source.
long
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.mac
MAC address of the destination. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
destination.packets
Packets sent from the destination to the source.
long
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.bytes
Total bytes transferred in both directions. If source.bytes and destination.bytes are known, network.bytes is their sum.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.direction
Direction of the network traffic. When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
keyword
network.packets
Total packets transferred in both directions. If source.packets and destination.packets are known, network.packets is their sum.
long
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.bytes
Bytes sent from the source to the destination.
long
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.mac
MAC address of the source. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
source.packets
Packets sent from the source to the destination.
long
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.connection.history
Flags indicating the history of the session.
keyword
zeek.connection.icmp.code
ICMP message code.
integer
zeek.connection.icmp.type
ICMP message type.
integer
zeek.connection.inner_vlan
VLAN identifier.
integer
zeek.connection.local_orig
Indicates whether the session is originated locally.
boolean
zeek.connection.local_resp
Indicates whether the session is responded locally.
boolean
zeek.connection.missed_bytes
Missed bytes for the session.
long
zeek.connection.state
Code indicating the state of the session.
keyword
zeek.connection.state_message
The state of the session.
keyword
zeek.connection.vlan
VLAN identifier.
integer
zeek.session_id
A unique identifier of the session
keyword

dce_rpc

The dce_rpc dataset collects the Zeek dce_rpc.log file, which contains Distributed Computing Environment/RPC data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.bytes
Bytes sent from the destination to the source.
long
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.bytes
Bytes sent from the source to the destination.
long
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.dce_rpc.endpoint
Endpoint name looked up from the uuid.
keyword
zeek.dce_rpc.named_pipe
Remote pipe name.
keyword
zeek.dce_rpc.operation
Operation seen in the call.
keyword
zeek.dce_rpc.rtt
Round trip time from the request to the response. If either the request or response wasn't seen, this will be null.
integer
zeek.session_id
A unique identifier of the session
keyword

dhcp

The dhcp dataset collects the Zeek dhcp.log file, which contains DHCP lease data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
client.address
Some event client addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.name
Name given by operators to sections of their network.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
server.address
Some event server addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.dhcp.address.assigned
IP address assigned by the server.
ip
zeek.dhcp.address.client
IP address of the client. If a transaction is only a client sending INFORM messages then there is no lease information exchanged so this is helpful to know who sent the messages. Getting an address in this field does require that the client sources at least one DHCP message using a non-broadcast address.
ip
zeek.dhcp.address.mac
Client's hardware address.
keyword
zeek.dhcp.address.requested
IP address requested by the client.
ip
zeek.dhcp.address.server
IP address of the DHCP server.
ip
zeek.dhcp.client_fqdn
FQDN given by client in Client FQDN option 81.
keyword
zeek.dhcp.domain
Domain given by the server in option 15.
keyword
zeek.dhcp.duration
Duration of the DHCP session representing the time from the first message to the last, in seconds.
double
zeek.dhcp.hostname
Name given by client in Hostname option 12.
keyword
zeek.dhcp.id.circuit
(present if policy/protocols/dhcp/sub-opts.bro is loaded) Added by DHCP relay agents which terminate switched or permanent circuits. It encodes an agent-local identifier of the circuit from which a DHCP client-to-server packet was received. Typically it should represent a router or switch interface number.
keyword
zeek.dhcp.id.remote_agent
(present if policy/protocols/dhcp/sub-opts.bro is loaded) A globally unique identifier added by relay agents to identify the remote host end of the circuit.
keyword
zeek.dhcp.id.subscriber
(present if policy/protocols/dhcp/sub-opts.bro is loaded) The subscriber ID is a value independent of the physical network configuration so that a customer's DHCP configuration can be given to them correctly no matter where they are physically connected.
keyword
zeek.dhcp.lease_time
IP address lease interval in seconds.
integer
zeek.dhcp.msg.client
Message typically accompanied with a DHCP_DECLINE so the client can tell the server why it rejected an address.
keyword
zeek.dhcp.msg.origin
(present if policy/protocols/dhcp/msg-orig.bro is loaded) The address that originated each message from the msg.types field.
ip
zeek.dhcp.msg.server
Message typically accompanied with a DHCP_NAK to let the client know why it rejected the request.
keyword
zeek.dhcp.msg.types
List of DHCP message types seen in this exchange.
keyword
zeek.dhcp.software.client
(present if policy/protocols/dhcp/software.bro is loaded) Software reported by the client in the vendor_class option.
keyword
zeek.dhcp.software.server
(present if policy/protocols/dhcp/software.bro is loaded) Software reported by the client in the vendor_class option.
keyword
zeek.session_id
A unique identifier of the session
keyword

dnp3

The dnp3 dataset collects the Zeek dnp3.log file which contains DNP3 requests and replies.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.bytes
Bytes sent from the destination to the source.
long
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.bytes
Bytes sent from the source to the destination.
long
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.dnp3.function.reply
The name of the function message in the reply.
keyword
zeek.dnp3.function.request
The name of the function message in the request.
keyword
zeek.dnp3.id
The response's internal indication number.
integer
zeek.session_id
A unique identifier of the session
keyword

dns

The dns dataset collects the Zeek dns.log file which contains DNS activity.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
dns.answers
An array containing an object for each answer section returned by the server. The main keys that should be present in these objects are defined by ECS. Records that have more information may contain more keys than what ECS defines. Not all DNS data sources give all details about DNS answers. At minimum, answer objects must contain the data key. If more information is available, map as much of it to ECS as possible, and add any additional fields to the answer objects as custom fields.
group
dns.answers.class
The class of DNS data contained in this resource record.
keyword
dns.answers.data
The data describing the resource. The meaning of this data depends on the type and class of the resource record.
keyword
dns.answers.name
The domain name to which this resource record pertains. If a chain of CNAME is being resolved, each answer's name should be the one that corresponds with the answer's data. It should not simply be the original question.name repeated.
keyword
dns.answers.ttl
The time interval in seconds that this resource record may be cached before it should be discarded. Zero values mean that the data should not be cached.
long
dns.answers.type
The type of data contained in this resource record.
keyword
dns.header_flags
Array of 2 letter DNS header flags.
keyword
dns.id
The DNS packet identifier assigned by the program that generated the query. The identifier is copied to the response.
keyword
dns.question.class
The class of records being queried.
keyword
dns.question.name
The name being queried. If the name field contains non-printable characters (below 32 or above 126), those characters should be represented as escaped base 10 integers (\DDD). Back slashes and quotes should be escaped. Tabs, carriage returns, and line feeds should be converted to \t, \r, and \n respectively.
keyword
dns.question.registered_domain
The highest registered domain, stripped of the subdomain. For example, the registered domain for "foo.example.com" is "example.com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
keyword
dns.question.subdomain
The subdomain is all of the labels under the registered_domain. If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
keyword
dns.question.top_level_domain
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
keyword
dns.question.type
The type of record being queried.
keyword
dns.resolved_ip
Array containing all IPs seen in answers.data. The answers array can be difficult to use, because of the variety of data formats it can contain. Extracting all IP addresses seen in there to dns.resolved_ip makes it possible to index them as IP addresses, and makes them easier to visualize and query for.
ip
dns.response_code
The DNS response code.
keyword
dns.type
The type of DNS event captured, query or answer. If your source of DNS events only gives you DNS queries, you should only create dns events of type dns.type:query. If your source of DNS events gives you answers as well, you should create one event per query (optionally as soon as the query is seen). And a second event containing all query details as well as an array of answers.
keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.original
Raw text message of entire event. Used to demonstrate log integrity or where the full log message (before splitting it up in multiple parts) may be required, e.g. for reindex. This field is not indexed and doc_values are disabled. It cannot be searched, but it can be retrieved from _source. If users wish to override this and index this field, please see Field data types in the Elasticsearch Reference.
keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.dns.AA
The Authoritative Answer bit for response messages specifies that the responding name server is an authority for the domain name in the question section.
boolean
zeek.dns.RA
The Recursion Available bit in a response message indicates that the name server supports recursive queries.
boolean
zeek.dns.RD
The Recursion Desired bit in a request message indicates that the client wants recursive service for this query.
boolean
zeek.dns.TC
The Truncation bit specifies that the message was truncated.
boolean
zeek.dns.TTLs
The caching intervals of the associated RRs described by the answers field.
double
zeek.dns.answers
The set of resource descriptions in the query answer.
keyword
zeek.dns.qclass
The QCLASS value specifying the class of the query.
long
zeek.dns.qclass_name
A descriptive name for the class of the query.
keyword
zeek.dns.qtype
A QTYPE value specifying the type of the query.
long
zeek.dns.qtype_name
A descriptive name for the type of the query.
keyword
zeek.dns.query
The domain name that is the subject of the DNS query.
keyword
zeek.dns.rcode
The response code value in DNS response messages.
long
zeek.dns.rcode_name
A descriptive name for the response code value.
keyword
zeek.dns.rejected
Indicates whether the DNS query was rejected by the server.
boolean
zeek.dns.rtt
Round trip time for the query and response.
double
zeek.dns.saw_query
Whether the full DNS query has been seen.
boolean
zeek.dns.saw_reply
Whether the full DNS reply has been seen.
boolean
zeek.dns.total_answers
The total number of resource records in the reply.
integer
zeek.dns.total_replies
The total number of resource records in the reply message.
integer
zeek.dns.trans_id
DNS transaction identifier.
keyword
zeek.session_id
A unique identifier of the session
keyword

dpd

The dpd dataset collects the Zeek dpd.log, which contains dynamic protocol detection failures.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.dpd.analyzer
The analyzer that generated the violation.
keyword
zeek.dpd.failure_reason
The textual reason for the analysis failure.
keyword
zeek.dpd.packet_segment
(present if policy/frameworks/dpd/packet-segment-logging.bro is loaded) A chunk of the payload that most likely resulted in the protocol violation.
keyword
zeek.session_id
A unique identifier of the session
keyword

files

The files dataset collects the Zeek files.log file, which contains file analysis results.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
client.ip
IP address of the client (IPv4 or IPv6).
ip
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
file.hash.md5
MD5 hash.
keyword
file.hash.sha1
SHA1 hash.
keyword
file.hash.sha256
SHA256 hash.
keyword
file.mime_type
MIME type should identify the format of the file or stream of bytes using https://www.iana.org/assignments/media-types/media-types.xhtml\[IANA official types], where possible. When more than one type is applicable, the most specific type should be used.
keyword
file.name
Name of the file including the extension, without the directory.
keyword
file.size
File size in bytes. Only relevant when file.type is "file".
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
related.hash
All the hashes seen on your event. Populating this field, then using it to search for hashes can help in situations where you're unsure what the hash algorithm is (and therefore which key name to search).
keyword
related.ip
All of the IPs seen on your event.
ip
server.ip
IP address of the server (IPv4 or IPv6).
ip
tags
List of keywords used to tag each event.
keyword
zeek.files.analyzers
A set of analysis types done during the file analysis.
keyword
zeek.files.depth
A value to represent the depth of this file in relation to its source. In SMTP, it is the depth of the MIME attachment on the message. In HTTP, it is the depth of the request within the TCP connection.
long
zeek.files.duration
The duration the file was analyzed for. Not the duration of the session.
double
zeek.files.entropy
The information density of the contents of the file.
double
zeek.files.extracted
Local filename of extracted file.
keyword
zeek.files.extracted_cutoff
Indicate whether the file being extracted was cut off hence not extracted completely.
boolean
zeek.files.extracted_size
The number of bytes extracted to disk.
long
zeek.files.filename
Name of the file if available.
keyword
zeek.files.fuid
A file unique identifier.
keyword
zeek.files.is_orig
If the source of this file is a network connection, this field indicates if the file is being sent by the originator of the connection or the responder.
boolean
zeek.files.local_orig
If the source of this file is a network connection, this field indicates if the data originated from the local network or not.
boolean
zeek.files.md5
An MD5 digest of the file contents.
keyword
zeek.files.mime_type
Mime type of the file.
keyword
zeek.files.missing_bytes
The number of bytes in the file stream that were completely missed during the process of analysis.
long
zeek.files.overflow_bytes
The number of bytes in the file stream that were not delivered to stream file analyzers. This could be overlapping bytes or bytes that couldn't be reassembled.
long
zeek.files.parent_fuid
Identifier associated with a container file from which this one was extracted as part of the file analysis.
keyword
zeek.files.rx_host
The host that received the file.
ip
zeek.files.seen_bytes
Number of bytes provided to the file analysis engine for the file.
long
zeek.files.session_ids
The sessions that have this file.
keyword
zeek.files.sha1
A SHA1 digest of the file contents.
keyword
zeek.files.sha256
A SHA256 digest of the file contents.
keyword
zeek.files.source
An identification of the source of the file data. E.g. it may be a network protocol over which it was transferred, or a local file path which was read, or some other input source.
keyword
zeek.files.timedout
Whether the file analysis timed out at least once for the file.
boolean
zeek.files.total_bytes
Total number of bytes that are supposed to comprise the full file.
long
zeek.files.tx_host
The host that transferred the file.
ip
zeek.session_id
A unique identifier of the session
keyword

ftp

The ftp dataset collects the Zeek ftp.log file, which contains FTP activity.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
file.mime_type
MIME type should identify the format of the file or stream of bytes using https://www.iana.org/assignments/media-types/media-types.xhtml\[IANA official types], where possible. When more than one type is applicable, the most specific type should be used.
keyword
file.size
File size in bytes. Only relevant when file.type is "file".
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
related.user
All the user names or other user identifiers seen on the event.
keyword
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
user.name
Short name or login of the user.
keyword
user.name.text
Multi-field of user.name.
match_only_text
zeek.ftp.arg
Argument for the command if one is given.
keyword
zeek.ftp.capture_password
Determines if the password will be captured for this request.
boolean
zeek.ftp.cmdarg.arg
Argument for the command if one was given.
keyword
zeek.ftp.cmdarg.cmd
Command.
keyword
zeek.ftp.cmdarg.seq
Counter to track how many commands have been executed.
integer
zeek.ftp.command
Command given by the client.
keyword
zeek.ftp.cwd
Current working directory that this session is in. By making the default value '.', we can indicate that unless something more concrete is discovered that the existing but unknown directory is ok to use.
keyword
zeek.ftp.data_channel.originating_host
The host that will be initiating the data connection.
ip
zeek.ftp.data_channel.passive
Whether PASV mode is toggled for control channel.
boolean
zeek.ftp.data_channel.response_host
The host that will be accepting the data connection.
ip
zeek.ftp.data_channel.response_port
The port at which the acceptor is listening for the data connection.
integer
zeek.ftp.file.fuid
(present if base/protocols/ftp/files.bro is loaded) File unique ID.
keyword
zeek.ftp.file.mime_type
Sniffed mime type of file.
keyword
zeek.ftp.file.size
Size of the file if the command indicates a file transfer.
long
zeek.ftp.last_auth_requested
present if base/protocols/ftp/gridftp.bro is loaded. Last authentication/security mechanism that was used.
keyword
zeek.ftp.passive
Indicates if the session is in active or passive mode.
boolean
zeek.ftp.password
Password for the current FTP session if captured.
keyword
zeek.ftp.pending_commands
Queue for commands that have been sent but not yet responded to are tracked here.
integer
zeek.ftp.reply.code
Reply code from the server in response to the command.
integer
zeek.ftp.reply.msg
Reply message from the server in response to the command.
keyword
zeek.ftp.user
User name for the current FTP session.
keyword
zeek.session_id
A unique identifier of the session
keyword

http

The http dataset collects the Zeek http.log file, which contains HTTP requests and replies.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
http.request.body.bytes
Size in bytes of the request body.
long
http.request.method
HTTP request method. The value should retain its casing from the original event. For example, GET, get, and GeT are all considered valid values for this field.
keyword
http.request.referrer
Referrer for this HTTP request.
keyword
http.response.body.bytes
Size in bytes of the response body.
long
http.response.status_code
HTTP response status code.
long
http.version
HTTP version.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
related.user
All the user names or other user identifiers seen on the event.
keyword
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
url.domain
Domain of the url, such as "www.elastic.co". In some cases a URL may refer to an IP and/or port directly, without a domain name. In this case, the IP address would go to the domain field. If the URL contains a literal IPv6 address enclosed by [ and ] (IETF RFC 2732), the [ and ] characters should also be captured in the domain field.
keyword
url.original
Unmodified original url as seen in the event source. Note that in network monitoring, the observed URL may be a full URL, whereas in access logs, the URL is often just represented as a path. This field is meant to represent the URL as it was observed, complete or not.
wildcard
url.original.text
Multi-field of url.original.
match_only_text
url.password
Password of the request.
keyword
url.path
Path of the request, such as "/search".
wildcard
url.port
Port of the request, such as 443.
long
url.scheme
Scheme of the request, such as "https". Note: The : is not part of the scheme.
keyword
url.username
Username of the request.
keyword
user.name
Short name or login of the user.
keyword
user.name.text
Multi-field of user.name.
match_only_text
user_agent.device.name
Name of the device.
keyword
user_agent.name
Name of the user agent.
keyword
user_agent.original
Unparsed user_agent string.
keyword
user_agent.original.text
Multi-field of user_agent.original.
match_only_text
user_agent.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
user_agent.os.full
Operating system name, including the version or code name.
keyword
user_agent.os.full.text
Multi-field of user_agent.os.full.
match_only_text
user_agent.os.kernel
Operating system kernel version as a raw string.
keyword
user_agent.os.name
Operating system name, without the version.
keyword
user_agent.os.name.text
Multi-field of user_agent.os.name.
match_only_text
user_agent.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
user_agent.os.version
Operating system version as a raw string.
keyword
user_agent.version
Version of the user agent.
keyword
zeek.http.captured_password
Determines if the password will be captured for this request.
boolean
zeek.http.client_header_names
The vector of HTTP header names sent by the client. No header values are included here, just the header names.
keyword
zeek.http.host
The Zeek host if it differs from the domain extracted from the Zeek URI.
keyword
zeek.http.info_code
Last seen 1xx informational reply code returned by the server.
integer
zeek.http.info_msg
Last seen 1xx informational reply message returned by the server.
keyword
zeek.http.orig_filenames
An ordered vector of filenames from the originator.
keyword
zeek.http.orig_fuids
An ordered vector of file unique IDs from the originator.
keyword
zeek.http.orig_mime_depth
Current number of MIME entities in the HTTP request message body.
integer
zeek.http.orig_mime_types
An ordered vector of mime types from the originator.
keyword
zeek.http.password
Password if basic-auth is performed for the request.
keyword
zeek.http.proxied
All of the headers that may indicate if the HTTP request was proxied.
keyword
zeek.http.range_request
Indicates if this request can assume 206 partial content in response.
boolean
zeek.http.resp_filenames
An ordered vector of filenames from the responder.
keyword
zeek.http.resp_fuids
An ordered vector of file unique IDs from the responder.
keyword
zeek.http.resp_mime_depth
Current number of MIME entities in the HTTP response message body.
integer
zeek.http.resp_mime_types
An ordered vector of mime types from the responder.
keyword
zeek.http.server_header_names
The vector of HTTP header names sent by the server. No header values are included here, just the header names.
keyword
zeek.http.status_msg
Status message returned by the server.
keyword
zeek.http.tags
A set of indicators of various attributes discovered and related to a particular request/response pair.
keyword
zeek.http.trans_depth
Represents the pipelined depth into the connection of this request/response transaction.
integer
zeek.session_id
A unique identifier of the session
keyword

intel

The intel dataset collects the Zeek intel.log file, which contains intelligence data matches.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.original
Raw text message of entire event. Used to demonstrate log integrity or where the full log message (before splitting it up in multiple parts) may be required, e.g. for reindex. This field is not indexed and doc_values are disabled. It cannot be searched, but it can be retrieved from _source. If users wish to override this and index this field, please see Field data types in the Elasticsearch Reference.
keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
threat.enrichments
A list of associated indicators objects enriching the event, and the context of that association/enrichment.
nested
threat.indicator.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
threat.indicator.as.organization.name
Organization name.
keyword
threat.indicator.as.organization.name.text
Multi-field of threat.indicator.as.organization.name.
match_only_text
threat.indicator.email.address
Identifies a threat indicator as an email address (irrespective of direction).
keyword
threat.indicator.file.name
Name of the file including the extension, without the directory.
keyword
threat.indicator.geo.city_name
City name.
keyword
threat.indicator.geo.continent_name
Name of the continent.
keyword
threat.indicator.geo.country_iso_code
Country ISO code.
keyword
threat.indicator.geo.country_name
Country name.
keyword
threat.indicator.geo.location
Longitude and latitude.
geo_point
threat.indicator.geo.region_iso_code
Region ISO code.
keyword
threat.indicator.geo.region_name
Region name.
keyword
threat.indicator.geo.timezone
The time zone of the location, such as IANA time zone name.
keyword
threat.indicator.ip
Identifies a threat indicator as an IP address (irrespective of direction).
ip
threat.indicator.type
Type of indicator as represented by Cyber Observable in STIX 2.0.
keyword
threat.indicator.url.domain
Domain of the url, such as "www.elastic.co". In some cases a URL may refer to an IP and/or port directly, without a domain name. In this case, the IP address would go to the domain field. If the URL contains a literal IPv6 address enclosed by [ and ] (IETF RFC 2732), the [ and ] characters should also be captured in the domain field.
keyword
threat.indicator.url.extension
The field contains the file extension from the original request url, excluding the leading dot. The file extension is only set if it exists, as not every url has a file extension. The leading period must not be included. For example, the value must be "png", not ".png". Note that when the file name has multiple extensions (example.tar.gz), only the last one should be captured ("gz", not "tar.gz").
keyword
threat.indicator.url.fragment
Portion of the url after the #, such as "top". The # is not part of the fragment.
keyword
threat.indicator.url.full
If full URLs are important to your use case, they should be stored in url.full, whether this field is reconstructed or present in the event source.
wildcard
threat.indicator.url.full.text
Multi-field of threat.indicator.url.full.
match_only_text
threat.indicator.url.original
Unmodified original url as seen in the event source. Note that in network monitoring, the observed URL may be a full URL, whereas in access logs, the URL is often just represented as a path. This field is meant to represent the URL as it was observed, complete or not.
wildcard
threat.indicator.url.original.text
Multi-field of threat.indicator.url.original.
match_only_text
threat.indicator.url.password
Password of the request.
keyword
threat.indicator.url.path
Path of the request, such as "/search".
wildcard
threat.indicator.url.port
Port of the request, such as 443.
long
threat.indicator.url.query
The query field describes the query string of the request, such as "q=elasticsearch". The ? is excluded from the query string. If a URL contains no ?, there is no query field. If there is a ? but no query, the query field exists with an empty string. The exists query can be used to differentiate between the two cases.
keyword
threat.indicator.url.registered_domain
The highest registered url domain, stripped of the subdomain. For example, the registered domain for "foo.example.com" is "example.com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
keyword
threat.indicator.url.scheme
Scheme of the request, such as "https". Note: The : is not part of the scheme.
keyword
threat.indicator.url.subdomain
The subdomain portion of a fully qualified domain name includes all of the names except the host name under the registered_domain. In a partially qualified domain, or if the the qualification level of the full name cannot be determined, subdomain contains all of the names below the registered domain. For example the subdomain portion of "www.east.mydomain.co.uk" is "east". If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
keyword
threat.indicator.url.top_level_domain
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
keyword
threat.indicator.url.username
Username of the request.
keyword
zeek.intel.file_desc
Frequently files can be described to give a bit more context. If the $f field is provided this field will be automatically filled out.
keyword
zeek.intel.file_mime_type
A mime type if the intelligence hit is related to a file. If the $f field is provided this will be automatically filled out.
keyword
zeek.intel.fuid
If a file was associated with this intelligence hit, this is the uid for the file.
keyword
zeek.intel.matched
Event to represent a match in the intelligence data from data that was seen.
keyword
zeek.intel.seen.conn
If the data was discovered within a connection, the connection record should go here to give context to the data.
keyword
zeek.intel.seen.f.*
If the data was discovered within a file, the file record should go here to provide context to the data.
object
zeek.intel.seen.fuid
If the data was discovered within a file, the file uid should go here to provide context to the data. If the file record f is provided, this will be automatically filled out.
keyword
zeek.intel.seen.host
If the indicator type was Intel::ADDR, then this field will be present.
keyword
zeek.intel.seen.indicator
The intelligence indicator.
keyword
zeek.intel.seen.indicator_type
The type of data the indicator represents.
keyword
zeek.intel.seen.node
The name of the node where the match was discovered.
keyword
zeek.intel.seen.uid
If the data was discovered within a connection, the connection uid should go here to give context to the data. If the conn field is provided, this will be automatically filled out.
keyword
zeek.intel.seen.where
Where the data was discovered.
keyword
zeek.intel.sources
Sources which supplied data for this match.
keyword
zeek.session_id
A unique identifier of the session
keyword

irc

The irc dataset collects the Zeek irc.log file, which contains IRC commands and responses.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
file.mime_type
MIME type should identify the format of the file or stream of bytes using https://www.iana.org/assignments/media-types/media-types.xhtml\[IANA official types], where possible. When more than one type is applicable, the most specific type should be used.
keyword
file.name
Name of the file including the extension, without the directory.
keyword
file.size
File size in bytes. Only relevant when file.type is "file".
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
related.user
All the user names or other user identifiers seen on the event.
keyword
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
user.name
Short name or login of the user.
keyword
user.name.text
Multi-field of user.name.
match_only_text
zeek.irc.addl
Any additional data for the command.
keyword
zeek.irc.command
Command given by the client.
keyword
zeek.irc.dcc.file.name
Present if base/protocols/irc/dcc-send.bro is loaded. DCC filename requested.
keyword
zeek.irc.dcc.file.size
Present if base/protocols/irc/dcc-send.bro is loaded. Size of the DCC transfer as indicated by the sender.
long
zeek.irc.dcc.mime_type
present if base/protocols/irc/dcc-send.bro is loaded. Sniffed mime type of the file.
keyword
zeek.irc.fuid
present if base/protocols/irc/files.bro is loaded. File unique ID.
keyword
zeek.irc.nick
Nickname given for the connection.
keyword
zeek.irc.user
Username given for the connection.
keyword
zeek.irc.value
Value for the command given by the client.
keyword
zeek.session_id
A unique identifier of the session
keyword

kerberos

The kerberos dataset collects the Zeek kerberos.log file, which contains kerberos data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
client.address
Some event client addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
related.user
All the user names or other user identifiers seen on the event.
keyword
server.address
Some event server addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
tls.client.x509.subject.common_name
List of common names (CN) of subject.
keyword
tls.client.x509.subject.country
List of country (C) code
keyword
tls.client.x509.subject.locality
List of locality names (L)
keyword
tls.client.x509.subject.organization
List of organizations (O) of subject.
keyword
tls.client.x509.subject.organizational_unit
List of organizational units (OU) of subject.
keyword
tls.client.x509.subject.state_or_province
List of state or province names (ST, S, or P)
keyword
tls.server.x509.subject.common_name
List of common names (CN) of subject.
keyword
tls.server.x509.subject.country
List of country (C) code
keyword
tls.server.x509.subject.locality
List of locality names (L)
keyword
tls.server.x509.subject.organization
List of organizations (O) of subject.
keyword
tls.server.x509.subject.organizational_unit
List of organizational units (OU) of subject.
keyword
tls.server.x509.subject.state_or_province
List of state or province names (ST, S, or P)
keyword
user.domain
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
keyword
user.name
Short name or login of the user.
keyword
user.name.text
Multi-field of user.name.
match_only_text
zeek.kerberos.cert.client.fuid
File unique ID of client cert.
keyword
zeek.kerberos.cert.client.subject
Subject of client certificate.
keyword
zeek.kerberos.cert.client.value
Client certificate.
keyword
zeek.kerberos.cert.server.fuid
File unique ID of server certificate.
keyword
zeek.kerberos.cert.server.subject
Subject of server certificate.
keyword
zeek.kerberos.cert.server.value
Server certificate.
keyword
zeek.kerberos.cipher
Ticket encryption type.
keyword
zeek.kerberos.client
Client name.
keyword
zeek.kerberos.error.code
Error code.
integer
zeek.kerberos.error.msg
Error message.
keyword
zeek.kerberos.forwardable
Forwardable ticket requested.
boolean
zeek.kerberos.renewable
Renewable ticket requested.
boolean
zeek.kerberos.request_type
Request type - Authentication Service (AS) or Ticket Granting Service (TGS).
keyword
zeek.kerberos.service
Service name.
keyword
zeek.kerberos.success
Request result.
boolean
zeek.kerberos.ticket.auth
Hash of ticket used to authorize request/transaction.
keyword
zeek.kerberos.ticket.new
Hash of ticket returned by the KDC.
keyword
zeek.kerberos.valid.days
Number of days the ticket is valid for.
integer
zeek.kerberos.valid.from
Ticket valid from.
date
zeek.kerberos.valid.until
Ticket valid until.
date
zeek.session_id
A unique identifier of the session
keyword

known_certs

The known_certs dataset captures information about SSL/TLS certificates seen on the local network. See the documentation for more details.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.geo.city_name
City name.
keyword
host.geo.continent_name
Name of the continent.
keyword
host.geo.country_iso_code
Country ISO code.
keyword
host.geo.country_name
Country name.
keyword
host.geo.location
Longitude and latitude.
geo_point
host.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
host.geo.region_iso_code
Region ISO code.
keyword
host.geo.region_name
Region name.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
server.geo.city_name
City name.
keyword
server.geo.continent_name
Name of the continent.
keyword
server.geo.country_iso_code
Country ISO code.
keyword
server.geo.country_name
Country name.
keyword
server.geo.location
Longitude and latitude.
geo_point
server.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
server.geo.region_iso_code
Region ISO code.
keyword
server.geo.region_name
Region name.
keyword
server.ip
IP address of the server (IPv4 or IPv6).
ip
server.port
Port of the server.
long
tags
List of keywords used to tag each event.
keyword
tls.server.issuer
Subject of the issuer of the x.509 certificate presented by the server.
keyword
tls.server.subject
Subject of the x.509 certificate presented by the server.
keyword
tls.server.x509.issuer.common_name
List of common name (CN) of issuing certificate authority.
keyword
tls.server.x509.issuer.distinguished_name
Distinguished name (DN) of issuing certificate authority.
keyword
tls.server.x509.serial_number
Unique serial number issued by the certificate authority. For consistency, if this value is alphanumeric, it should be formatted without colons and uppercase characters.
keyword
tls.server.x509.subject.common_name
List of common names (CN) of subject.
keyword
tls.server.x509.subject.distinguished_name
Distinguished name (DN) of the certificate subject entity.
keyword

known_hosts

The known_hosts dataset simply records a timestamp and an IP address when Zeek observes a new system on the local network.. See the documentation for more details.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.geo.city_name
City name.
keyword
host.geo.continent_name
Name of the continent.
keyword
host.geo.country_iso_code
Country ISO code.
keyword
host.geo.country_name
Country name.
keyword
host.geo.location
Longitude and latitude.
geo_point
host.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
host.geo.region_iso_code
Region ISO code.
keyword
host.geo.region_name
Region name.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
tags
List of keywords used to tag each event.
keyword

known_services

The known_services dataset records a timestamp, IP, port number, protocol, and service (if available) when Zeek observes a system offering a new service on the local network. See the documentation for more details.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.geo.city_name
City name.
keyword
host.geo.continent_name
Name of the continent.
keyword
host.geo.country_iso_code
Country ISO code.
keyword
host.geo.country_name
Country name.
keyword
host.geo.location
Longitude and latitude.
geo_point
host.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
host.geo.region_iso_code
Region ISO code.
keyword
host.geo.region_name
Region name.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.application
When a specific application or service is identified from network connection details (source/dest IPs, ports, certificates, or wire format), this field captures the application's or service's name. For example, the original event identifies the network connection being from a specific web service in a https network connection, like facebook or twitter. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
server.geo.city_name
City name.
keyword
server.geo.continent_name
Name of the continent.
keyword
server.geo.country_iso_code
Country ISO code.
keyword
server.geo.country_name
Country name.
keyword
server.geo.location
Longitude and latitude.
geo_point
server.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
server.geo.region_iso_code
Region ISO code.
keyword
server.geo.region_name
Region name.
keyword
server.ip
IP address of the server (IPv4 or IPv6).
ip
server.port
Port of the server.
long
tags
List of keywords used to tag each event.
keyword

modbus

The modbus dataset collects the Zeek modbus.log file, which contains modbus commands and responses.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.modbus.exception
The exception if the response was a failure.
keyword
zeek.modbus.function
The name of the function message that was sent.
keyword
zeek.modbus.track_address
Present if policy/protocols/modbus/track-memmap.bro is loaded. Modbus track address.
integer
zeek.session_id
A unique identifier of the session
keyword

mysql

The mysql dataset collects the Zeek mysql.log file, which contains MySQL data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.mysql.arg
The argument issued to the command.
keyword
zeek.mysql.cmd
The command that was issued.
keyword
zeek.mysql.response
Server message, if any.
keyword
zeek.mysql.rows
The number of affected rows, if any.
integer
zeek.mysql.success
Whether the command succeeded.
boolean
zeek.session_id
A unique identifier of the session
keyword

notice

The notice dataset collects the Zeek notice.log file, which contains Zeek notices.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
file.mime_type
MIME type should identify the format of the file or stream of bytes using https://www.iana.org/assignments/media-types/media-types.xhtml\[IANA official types], where possible. When more than one type is applicable, the most specific type should be used.
keyword
file.size
File size in bytes. Only relevant when file.type is "file".
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
rule.description
The description of the rule generating the event.
keyword
rule.name
The name of the rule or signature generating the event.
keyword
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.notice.actions
The actions which have been applied to this notice.
keyword
zeek.notice.connection_id
Identifier of the related connection session.
keyword
zeek.notice.dropped
Indicate if the source IP address was dropped and denied network access.
boolean
zeek.notice.email_body_sections
By adding chunks of text into this element, other scripts can expand on notices that are being emailed.
text
zeek.notice.email_delay_tokens
Adding a string token to this set will cause the built-in emailing functionality to delay sending the email either the token has been removed or the email has been delayed for the specified time duration.
keyword
zeek.notice.ffile.total_bytes
Total number of bytes that are supposed to comprise the full file.
long
zeek.notice.file.id
An identifier associated with a single file that is related to this notice.
keyword
zeek.notice.file.is_orig
If the source of this file is a network connection, this field indicates if the file is being sent by the originator of the connection or the responder.
boolean
zeek.notice.file.mime_type
A mime type if the notice is related to a file.
keyword
zeek.notice.file.missing_bytes
The number of bytes in the file stream that were completely missed during the process of analysis.
long
zeek.notice.file.overflow_bytes
The number of bytes in the file stream that were not delivered to stream file analyzers. This could be overlapping bytes or bytes that couldn't be reassembled.
long
zeek.notice.file.parent_id
Identifier associated with a container file from which this one was extracted.
keyword
zeek.notice.file.seen_bytes
Number of bytes provided to the file analysis engine for the file.
long
zeek.notice.file.source
An identification of the source of the file data. E.g. it may be a network protocol over which it was transferred, or a local file path which was read, or some other input source.
keyword
zeek.notice.fuid
A file unique ID if this notice is related to a file.
keyword
zeek.notice.icmp_id
Identifier of the related ICMP session.
keyword
zeek.notice.identifier
This field is provided when a notice is generated for the purpose of deduplicating notices.
keyword
zeek.notice.msg
The human readable message for the notice.
keyword
zeek.notice.n
Associated count, or a status code.
long
zeek.notice.note
The type of the notice.
keyword
zeek.notice.peer_descr
Textual description for the peer that raised this notice.
text
zeek.notice.peer_name
Name of remote peer that raised this notice.
keyword
zeek.notice.sub
The human readable sub-message.
keyword
zeek.notice.suppress_for
This field indicates the length of time that this unique notice should be suppressed.
double
zeek.session_id
A unique identifier of the session
keyword

ntp

The ntp dataset collects the Zeek ntp.log file, which contains NTP data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.bytes
Bytes sent from the destination to the source.
long
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.mac
MAC address of the destination. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
destination.packets
Packets sent from the destination to the source.
long
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.bytes
Total bytes transferred in both directions. If source.bytes and destination.bytes are known, network.bytes is their sum.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.direction
Direction of the network traffic. When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
keyword
network.packets
Total packets transferred in both directions. If source.packets and destination.packets are known, network.packets is their sum.
long
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.bytes
Bytes sent from the source to the destination.
long
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.mac
MAC address of the source. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
source.packets
Packets sent from the source to the destination.
long
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.ntp.mode
The NTP mode being used.
integer
zeek.ntp.num_exts
Number of extension fields (which are not currently parsed).
integer
zeek.ntp.org_time
Time at the client when the request departed for the NTP server.
date
zeek.ntp.poll
The maximum interval between successive messages in seconds.
double
zeek.ntp.precision
The precision of the system clock in seconds.
double
zeek.ntp.rec_time
Time at the server when the request arrived from the NTP client.
date
zeek.ntp.ref_id
For stratum 0, 4 character string used for debugging. For stratum 1, ID assigned to the reference clock by IANA. Above stratum 1, when using IPv4, the IP address of the reference clock. Note that the NTP protocol did not originally specify a large enough field to represent IPv6 addresses, so they use the first four bytes of the MD5 hash of the reference clock’s IPv6 address (i.e. an IPv4 address here is not necessarily IPv4).
keyword
zeek.ntp.ref_time
Time when the system clock was last set or correct.
date
zeek.ntp.root_delay
Total round-trip delay to the reference clock in seconds.
double
zeek.ntp.root_disp
Total dispersion to the reference clock in seconds.
double
zeek.ntp.stratum
The stratum (primary server, secondary server, etc.).
integer
zeek.ntp.version
The NTP version number (1, 2, 3, 4).
integer
zeek.ntp.xmt_time
Time at the server when the response departed for the NTP client.
date
zeek.session_id
A unique identifier of the session
keyword

ntlm

The ntlm dataset collects the Zeek ntlm.log file, which contains NT LAN Manager(NTLM) data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
file.path
Full path to the file, including the file name. It should include the drive letter, when appropriate.
keyword
file.path.text
Multi-field of file.path.
match_only_text
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
related.user
All the user names or other user identifiers seen on the event.
keyword
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
user.domain
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
keyword
user.name
Short name or login of the user.
keyword
user.name.text
Multi-field of user.name.
match_only_text
zeek.ntlm.domain
Domain name given by the client.
keyword
zeek.ntlm.hostname
Hostname given by the client.
keyword
zeek.ntlm.server.name.dns
DNS name given by the server in a CHALLENGE.
keyword
zeek.ntlm.server.name.netbios
NetBIOS name given by the server in a CHALLENGE.
keyword
zeek.ntlm.server.name.tree
Tree name given by the server in a CHALLENGE.
keyword
zeek.ntlm.success
Indicate whether or not the authentication was successful.
boolean
zeek.ntlm.username
Username given by the client.
keyword
zeek.session_id
A unique identifier of the session
keyword

ocsp

The ocsp dataset collects the Zeek ocsp.log file, which contains Online Certificate Status Protocol (OCSP) data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
file.path
Full path to the file, including the file name. It should include the drive letter, when appropriate.
keyword
file.path.text
Multi-field of file.path.
match_only_text
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.hash
All the hashes seen on your event. Populating this field, then using it to search for hashes can help in situations where you're unsure what the hash algorithm is (and therefore which key name to search).
keyword
tags
List of keywords used to tag each event.
keyword
zeek.ocsp.file_id
File id of the OCSP reply.
keyword
zeek.ocsp.hash.algorithm
Hash algorithm used to generate issuerNameHash and issuerKeyHash.
keyword
zeek.ocsp.hash.issuer.key
Hash of the issuer's public key.
keyword
zeek.ocsp.hash.issuer.name
Hash of the issuer's distingueshed name.
keyword
zeek.ocsp.revoke.date
Time at which the certificate was revoked.
date
zeek.ocsp.revoke.reason
Reason for which the certificate was revoked.
keyword
zeek.ocsp.serial_number
Serial number of the affected certificate.
keyword
zeek.ocsp.status
Status of the affected certificate.
keyword
zeek.ocsp.update.next
The latest time at which new information about the status of the certificate will be available.
date
zeek.ocsp.update.this
The time at which the status being shows is known to have been correct.
date
zeek.session_id
A unique identifier of the session
keyword

pe

The pe dataset collects the Zeek pe.log file, which contains portable executable data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
tags
List of keywords used to tag each event.
keyword
zeek.pe.client
The client's version string.
keyword
zeek.pe.compile_time
The time that the file was created at.
date
zeek.pe.has_cert_table
Does the file have an attribute certificate table?
boolean
zeek.pe.has_debug_data
Does the file have a debug table?
boolean
zeek.pe.has_export_table
Does the file have an export table?
boolean
zeek.pe.has_import_table
Does the file have an import table?
boolean
zeek.pe.id
File id of this portable executable file.
keyword
zeek.pe.is_64bit
Is the file a 64-bit executable?
boolean
zeek.pe.is_exe
Is the file an executable, or just an object file?
boolean
zeek.pe.machine
The target machine that the file was compiled for.
keyword
zeek.pe.os
The required operating system.
keyword
zeek.pe.section_names
The names of the sections, in order.
keyword
zeek.pe.subsystem
The subsystem that is required to run this file.
keyword
zeek.pe.uses_aslr
Does the file support Address Space Layout Randomization?
boolean
zeek.pe.uses_code_integrity
Does the file enforce code integrity checks?
boolean
zeek.pe.uses_dep
Does the file support Data Execution Prevention?
boolean
zeek.pe.uses_seh
Does the file use structured exception handing?
boolean
zeek.session_id
A unique identifier of the session
keyword

radius

The radius dataset collects the Zeek radius.log file, which contains RADIUS authentication attempts.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
related.user
All the user names or other user identifiers seen on the event.
keyword
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
user.name
Short name or login of the user.
keyword
user.name.text
Multi-field of user.name.
match_only_text
zeek.radius.connect_info
Connect info, if present.
keyword
zeek.radius.framed_addr
The address given to the network access server, if present. This is only a hint from the RADIUS server and the network access server is not required to honor the address.
ip
zeek.radius.logged
Whether this has already been logged and can be ignored.
boolean
zeek.radius.mac
MAC address, if present.
keyword
zeek.radius.remote_ip
Remote IP address, if present. This is collected from the Tunnel-Client-Endpoint attribute.
ip
zeek.radius.reply_msg
Reply message from the server challenge. This is frequently shown to the user authenticating.
keyword
zeek.radius.result
Successful or failed authentication.
keyword
zeek.radius.ttl
The duration between the first request and either the "Access-Accept" message or an error. If the field is empty, it means that either the request or response was not seen.
integer
zeek.radius.username
The username, if present.
keyword
zeek.session_id
A unique identifier of the session
keyword

rdp

The rdp dataset collects the Zeek rdp.log file, which contains RDP data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
tls.established
Boolean flag indicating if the TLS negotiation was successful and transitioned to an encrypted tunnel.
boolean
zeek.rdp.cert.count
The number of certs seen. X.509 can transfer an entire certificate chain.
integer
zeek.rdp.cert.permanent
Indicates if the provided certificate or certificate chain is permanent or temporary.
boolean
zeek.rdp.cert.type
If the connection is being encrypted with native RDP encryption, this is the type of cert being used.
keyword
zeek.rdp.client.build
RDP client version used by the client machine.
keyword
zeek.rdp.client.client_name
Name of the client machine.
keyword
zeek.rdp.client.product_id
Product ID of the client machine.
keyword
zeek.rdp.cookie
Cookie value used by the client machine. This is typically a username.
keyword
zeek.rdp.desktop.color_depth
The color depth requested by the client in the high_color_depth field.
keyword
zeek.rdp.desktop.height
Desktop height of the client machine.
integer
zeek.rdp.desktop.width
Desktop width of the client machine.
integer
zeek.rdp.done
Track status of logging RDP connections.
boolean
zeek.rdp.encryption.level
Encryption level of the connection.
keyword
zeek.rdp.encryption.method
Encryption method of the connection.
keyword
zeek.rdp.keyboard_layout
Keyboard layout (language) of the client machine.
keyword
zeek.rdp.result
Status result for the connection. It's a mix between RDP negotation failure messages and GCC server create response messages.
keyword
zeek.rdp.security_protocol
Security protocol chosen by the server.
keyword
zeek.rdp.ssl
(present if policy/protocols/rdp/indicate_ssl.bro is loaded) Flag the connection if it was seen over SSL.
boolean
zeek.session_id
A unique identifier of the session
keyword

rfb

The rfb dataset collects the Zeek rfb.log file, which contains Remote Framebuffer (RFB) data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.rfb.auth.method
Identifier of authentication method used.
keyword
zeek.rfb.auth.success
Whether or not authentication was successful.
boolean
zeek.rfb.desktop_name
Name of the screen that is being shared.
keyword
zeek.rfb.height
Height of the screen that is being shared.
integer
zeek.rfb.share_flag
Whether the client has an exclusive or a shared session.
boolean
zeek.rfb.version.client.major
Major version of the client.
keyword
zeek.rfb.version.client.minor
Minor version of the client.
keyword
zeek.rfb.version.server.major
Major version of the server.
keyword
zeek.rfb.version.server.minor
Minor version of the server.
keyword
zeek.rfb.width
Width of the screen that is being shared.
integer
zeek.session_id
A unique identifier of the session
keyword

signature

The signature dataset collects the Zeek signature.log file, which contains Zeek signature matches.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.bytes
Bytes sent from the destination to the source.
long
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.mac
MAC address of the destination. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
destination.packets
Packets sent from the destination to the source.
long
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.bytes
Total bytes transferred in both directions. If source.bytes and destination.bytes are known, network.bytes is their sum.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.direction
Direction of the network traffic. When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
keyword
network.packets
Total packets transferred in both directions. If source.packets and destination.packets are known, network.packets is their sum.
long
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
rule.description
The description of the rule generating the event.
keyword
rule.id
A rule ID that is unique within the scope of an agent, observer, or other entity using the rule for detection of this event.
keyword
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.bytes
Bytes sent from the source to the destination.
long
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.mac
MAC address of the source. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
source.packets
Packets sent from the source to the destination.
long
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.session_id
A unique identifier of the session
keyword
zeek.signature.event_msg
A more descriptive message of the signature-matching event.
keyword
zeek.signature.host_count
Number of hosts, from a summary count.
integer
zeek.signature.note
Notice associated with signature event.
keyword
zeek.signature.sig_count
Number of sigs, usually from summary count.
integer
zeek.signature.sig_id
The name of the signature that matched.
keyword
zeek.signature.sub_msg
Extracted payload data or extra message.
keyword

sip

The sip dataset collects the Zeek sip.log file, which contains SIP data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
url.full
If full URLs are important to your use case, they should be stored in url.full, whether this field is reconstructed or present in the event source.
wildcard
url.full.text
Multi-field of url.full.
match_only_text
zeek.session_id
A unique identifier of the session
keyword
zeek.sip.call_id
Contents of the Call-ID: header from the client.
keyword
zeek.sip.content_type
Contents of the Content-Type: header from the server.
keyword
zeek.sip.date
Contents of the Date: header from the client.
keyword
zeek.sip.reply_to
Contents of the Reply-To: header.
keyword
zeek.sip.request.body_length
Contents of the Content-Length: header from the client.
long
zeek.sip.request.from
Contents of the request From: header Note: The tag= value that's usually appended to the sender is stripped off and not logged.
keyword
zeek.sip.request.path
The client message transmission path, as extracted from the headers.
keyword
zeek.sip.request.to
Contents of the To: header.
keyword
zeek.sip.response.body_length
Contents of the Content-Length: header from the server.
long
zeek.sip.response.from
Contents of the response From: header Note: The tag= value that's usually appended to the sender is stripped off and not logged.
keyword
zeek.sip.response.path
The server message transmission path, as extracted from the headers.
keyword
zeek.sip.response.to
Contents of the response To: header.
keyword
zeek.sip.sequence.method
Verb used in the SIP request (INVITE, REGISTER etc.).
keyword
zeek.sip.sequence.number
Contents of the CSeq: header from the client.
keyword
zeek.sip.status.code
Status code returned by the server.
integer
zeek.sip.status.msg
Status message returned by the server.
keyword
zeek.sip.subject
Contents of the Subject: header from the client.
keyword
zeek.sip.transaction_depth
Represents the pipelined depth into the connection of this request/response transaction.
integer
zeek.sip.uri
URI used in the request.
keyword
zeek.sip.user_agent
Contents of the User-Agent: header from the client.
keyword
zeek.sip.warning
Contents of the Warning: header.
keyword

smb_cmd

The smb_cmd dataset collects the Zeek smb_cmd.log file, which contains SMB commands.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
related.user
All the user names or other user identifiers seen on the event.
keyword
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
user.name
Short name or login of the user.
keyword
user.name.text
Multi-field of user.name.
match_only_text
zeek.session_id
A unique identifier of the session
keyword
zeek.smb_cmd.argument
Command argument sent by the client, if any.
keyword
zeek.smb_cmd.command
The command sent by the client.
keyword
zeek.smb_cmd.file.action
Action this log record represents.
keyword
zeek.smb_cmd.file.host.rx
Address of the receiving host.
ip
zeek.smb_cmd.file.host.tx
Address of the transmitting host.
ip
zeek.smb_cmd.file.name
Filename if one was seen.
keyword
zeek.smb_cmd.file.uid
UID of the referenced file.
keyword
zeek.smb_cmd.rtt
Round trip time from the request to the response.
double
zeek.smb_cmd.smb1_offered_dialects
Present if base/protocols/smb/smb1-main.bro is loaded. Dialects offered by the client.
keyword
zeek.smb_cmd.smb2_offered_dialects
Present if base/protocols/smb/smb2-main.bro is loaded. Dialects offered by the client.
integer
zeek.smb_cmd.status
Server reply to the client's command.
keyword
zeek.smb_cmd.sub_command
The subcommand sent by the client, if present.
keyword
zeek.smb_cmd.tree
If this is related to a tree, this is the tree that was used for the current command.
keyword
zeek.smb_cmd.tree_service
The type of tree (disk share, printer share, named pipe, etc.).
keyword
zeek.smb_cmd.username
Authenticated username, if available.
keyword
zeek.smb_cmd.version
Version of SMB for the command.
keyword

smb_files

The smb_files dataset collects the Zeek smb_files.log file, which contains SMB file data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
file.accessed
Last time the file was accessed. Note that not all filesystems keep track of access time.
date
file.created
File creation time. Note that not all filesystems store the creation time.
date
file.ctime
Last time the file attributes or metadata changed. Note that changes to the file content will update mtime. This implies ctime will be adjusted at the same time, since mtime is an attribute of the file.
date
file.mtime
Last time the file content was modified.
date
file.name
Name of the file including the extension, without the directory.
keyword
file.path
Full path to the file, including the file name. It should include the drive letter, when appropriate.
keyword
file.path.text
Multi-field of file.path.
match_only_text
file.size
File size in bytes. Only relevant when file.type is "file".
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
related.user
All the user names or other user identifiers seen on the event.
keyword
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.session_id
A unique identifier of the session
keyword
zeek.smb_files.action
Action this log record represents.
keyword
zeek.smb_files.fid
ID referencing this file.
integer
zeek.smb_files.name
Filename if one was seen.
keyword
zeek.smb_files.path
Path pulled from the tree this file was transferred to or from.
keyword
zeek.smb_files.previous_name
If the rename action was seen, this will be the file's previous name.
keyword
zeek.smb_files.size
Byte size of the file.
long
zeek.smb_files.times.accessed
The file's access time.
date
zeek.smb_files.times.changed
The file's change time.
date
zeek.smb_files.times.created
The file's create time.
date
zeek.smb_files.times.modified
The file's modify time.
date
zeek.smb_files.uuid
UUID referencing this file if DCE/RPC.
keyword

smb_mapping

The smb_mapping dataset collects the Zeek smb_mapping.log file, which contains SMB trees.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
file.path
Full path to the file, including the file name. It should include the drive letter, when appropriate.
keyword
file.path.text
Multi-field of file.path.
match_only_text
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.session_id
A unique identifier of the session
keyword
zeek.smb_mapping.native_file_system
File system of the tree.
keyword
zeek.smb_mapping.path
Name of the tree path.
keyword
zeek.smb_mapping.service
The type of resource of the tree (disk share, printer share, named pipe, etc.).
keyword
zeek.smb_mapping.share_type
If this is SMB2, a share type will be included. For SMB1, the type of share will be deduced and included as well.
keyword

smtp

The smtp dataset collects the Zeek smtp.log file, which contains SMTP transactions..

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
tls.established
Boolean flag indicating if the TLS negotiation was successful and transitioned to an encrypted tunnel.
boolean
zeek.session_id
A unique identifier of the session
keyword
zeek.smtp.cc
Contents of the CC header.
keyword
zeek.smtp.date
Contents of the Date header.
date
zeek.smtp.first_received
Contents of the first Received header.
keyword
zeek.smtp.from
Contents of the From header.
keyword
zeek.smtp.fuids
(present if base/protocols/smtp/files.bro is loaded) An ordered vector of file unique IDs seen attached to the message.
keyword
zeek.smtp.has_client_activity
Indicates if client activity has been seen, but not yet logged.
boolean
zeek.smtp.helo
Contents of the Helo header.
keyword
zeek.smtp.in_reply_to
Contents of the In-Reply-To header.
keyword
zeek.smtp.is_webmail
Indicates if the message was sent through a webmail interface.
boolean
zeek.smtp.last_reply
The last message that the server sent to the client.
keyword
zeek.smtp.mail_from
Email addresses found in the MAIL FROM header.
keyword
zeek.smtp.msg_id
Contents of the MsgID header.
keyword
zeek.smtp.path
The message transmission path, as extracted from the headers.
ip
zeek.smtp.process_received_from
Indicates if the "Received: from" headers should still be processed.
boolean
zeek.smtp.rcpt_to
Email addresses found in the RCPT TO header.
keyword
zeek.smtp.reply_to
Contents of the ReplyTo header.
keyword
zeek.smtp.second_received
Contents of the second Received header.
keyword
zeek.smtp.subject
Contents of the Subject header.
keyword
zeek.smtp.tls
Indicates that the connection has switched to using TLS.
boolean
zeek.smtp.to
Contents of the To header.
keyword
zeek.smtp.transaction_depth
A count to represent the depth of this message transaction in a single connection where multiple messages were transferred.
integer
zeek.smtp.user_agent
Value of the User-Agent header from the client.
keyword
zeek.smtp.x_originating_ip
Contents of the X-Originating-IP header.
keyword

snmp

The snmp dataset collects the Zeek snmp.log file, which contains SNMP messages.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.session_id
A unique identifier of the session
keyword
zeek.snmp.community
The community string of the first SNMP packet associated with the session. This is used as part of SNMP's (v1 and v2c) administrative/security framework. See RFC 1157 or RFC 1901.
keyword
zeek.snmp.display_string
A system description of the SNMP responder endpoint.
keyword
zeek.snmp.duration
The amount of time between the first packet beloning to the SNMP session and the latest one seen.
double
zeek.snmp.get.bulk_requests
The number of variable bindings in GetBulkRequest PDUs seen for the session.
integer
zeek.snmp.get.requests
The number of variable bindings in GetRequest/GetNextRequest PDUs seen for the session.
integer
zeek.snmp.get.responses
The number of variable bindings in GetResponse/Response PDUs seen for the session.
integer
zeek.snmp.set.requests
The number of variable bindings in SetRequest PDUs seen for the session.
integer
zeek.snmp.up_since
The time at which the SNMP responder endpoint claims it's been up since.
date
zeek.snmp.version
The version of SNMP being used.
keyword

socks

The socks dataset collects the Zeek socks.log file, which contains SOCKS proxy requests.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
related.user
All the user names or other user identifiers seen on the event.
keyword
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
user.name
Short name or login of the user.
keyword
user.name.text
Multi-field of user.name.
match_only_text
zeek.session_id
A unique identifier of the session
keyword
zeek.socks.bound.host
Server bound address. Could be an address, a name or both.
keyword
zeek.socks.bound.port
Server bound port.
integer
zeek.socks.capture_password
Determines if the password will be captured for this request.
boolean
zeek.socks.password
Password used to request a login to the proxy.
keyword
zeek.socks.request.host
Client requested SOCKS address. Could be an address, a name or both.
keyword
zeek.socks.request.port
Client requested port.
integer
zeek.socks.status
Server status for the attempt at using the proxy.
keyword
zeek.socks.user
Username used to request a login to the proxy.
keyword
zeek.socks.version
Protocol version of SOCKS.
integer

software

The software dataset collects details on applications operated by the hosts it sees on the local network. See the documentation for more details.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.geo.city_name
City name.
keyword
host.geo.continent_name
Name of the continent.
keyword
host.geo.country_iso_code
Country ISO code.
keyword
host.geo.country_name
Country name.
keyword
host.geo.location
Longitude and latitude.
geo_point
host.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
host.geo.region_iso_code
Region ISO code.
keyword
host.geo.region_name
Region name.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
tags
List of keywords used to tag each event.
keyword
zeek.software.name
Name of the software (e.g. Apache).
keyword
zeek.software.type
The type of software detected
keyword
zeek.software.version.additional
Additional version information
keyword
zeek.software.version.full
Full unparsed version of the software.
keyword
zeek.software.version.major
Major version of software.
long
zeek.software.version.minor
minor version of software.
long
zeek.software.version.minor2
2nd minor version of software.
long
zeek.software.version.minor3
3rd minor version of software.
long

ssh

The ssh dataset collects the Zeek ssh.log file, which contains SSH connection data.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.session_id
A unique identifier of the session
keyword
zeek.ssh.algorithm.cipher
The encryption algorithm in use.
keyword
zeek.ssh.algorithm.compression
The compression algorithm in use.
keyword
zeek.ssh.algorithm.host_key
The server host key's algorithm.
keyword
zeek.ssh.algorithm.key_exchange
The key exchange algorithm in use.
keyword
zeek.ssh.algorithm.mac
The signing (MAC) algorithm in use.
keyword
zeek.ssh.auth.attempts
The number of authentication attemps we observed. There's always at least one, since some servers might support no authentication at all. It's important to note that not all of these are failures, since some servers require two-factor auth (e.g. password AND pubkey).
integer
zeek.ssh.auth.success
Authentication result.
boolean
zeek.ssh.client
The client's version string.
keyword
zeek.ssh.direction
Direction of the connection. If the client was a local host logging into an external host, this would be OUTBOUND. INBOUND would be set for the opposite situation.
keyword
zeek.ssh.host_key
The server's key thumbprint.
keyword
zeek.ssh.server
The server's version string.
keyword
zeek.ssh.version
SSH major version (1 or 2).
integer

ssl

The ssl dataset collects the Zeek ssl.log file, which contains SSL/TLS handshake info.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
client.address
Some event client addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.hash
All the hashes seen on your event. Populating this field, then using it to search for hashes can help in situations where you're unsure what the hash algorithm is (and therefore which key name to search).
keyword
related.ip
All of the IPs seen on your event.
ip
server.address
Some event server addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
tls.cipher
String indicating the cipher used during the current connection.
keyword
tls.client.issuer
Distinguished name of subject of the issuer of the x.509 certificate presented by the client.
keyword
tls.client.ja3
A hash that identifies clients based on how they perform an SSL/TLS handshake.
keyword
tls.client.x509.subject.common_name
List of common names (CN) of subject.
keyword
tls.client.x509.subject.country
List of country (C) code
keyword
tls.client.x509.subject.locality
List of locality names (L)
keyword
tls.client.x509.subject.organization
List of organizations (O) of subject.
keyword
tls.client.x509.subject.organizational_unit
List of organizational units (OU) of subject.
keyword
tls.client.x509.subject.state_or_province
List of state or province names (ST, S, or P)
keyword
tls.curve
String indicating the curve used for the given cipher, when applicable.
keyword
tls.established
Boolean flag indicating if the TLS negotiation was successful and transitioned to an encrypted tunnel.
boolean
tls.resumed
Boolean flag indicating if this TLS connection was resumed from an existing TLS negotiation.
boolean
tls.server.hash.sha1
Certificate fingerprint using the SHA1 digest of DER-encoded version of certificate offered by the server. For consistency with other hash values, this value should be formatted as an uppercase hash.
keyword
tls.server.issuer
Subject of the issuer of the x.509 certificate presented by the server.
keyword
tls.server.ja3s
A hash that identifies servers based on how they perform an SSL/TLS handshake.
keyword
tls.server.not_after
Timestamp indicating when server certificate is no longer considered valid.
date
tls.server.not_before
Timestamp indicating when server certificate is first considered valid.
date
tls.server.subject
Subject of the x.509 certificate presented by the server.
keyword
tls.server.x509.issuer.common_name
List of common name (CN) of issuing certificate authority.
keyword
tls.server.x509.issuer.country
List of country (C) codes
keyword
tls.server.x509.issuer.distinguished_name
Distinguished name (DN) of issuing certificate authority.
keyword
tls.server.x509.issuer.locality
List of locality names (L)
keyword
tls.server.x509.issuer.organization
List of organizations (O) of issuing certificate authority.
keyword
tls.server.x509.issuer.organizational_unit
List of organizational units (OU) of issuing certificate authority.
keyword
tls.server.x509.issuer.state_or_province
List of state or province names (ST, S, or P)
keyword
tls.server.x509.subject.common_name
List of common names (CN) of subject.
keyword
tls.server.x509.subject.country
List of country (C) code
keyword
tls.server.x509.subject.locality
List of locality names (L)
keyword
tls.server.x509.subject.organization
List of organizations (O) of subject.
keyword
tls.server.x509.subject.organizational_unit
List of organizational units (OU) of subject.
keyword
tls.server.x509.subject.state_or_province
List of state or province names (ST, S, or P)
keyword
tls.version
Numeric part of the version parsed from the original string.
keyword
tls.version_protocol
Normalized lowercase protocol name parsed from original string.
keyword
zeek.session_id
A unique identifier of the session
keyword
zeek.ssl.cipher
SSL/TLS cipher suite that was logged.
keyword
zeek.ssl.client.cert_chain
Chain of certificates offered by the client to validate its complete signing chain.
keyword
zeek.ssl.client.cert_chain_fuids
An ordered vector of certificate file identifiers for the certificates offered by the client.
keyword
zeek.ssl.client.issuer.common_name
Common name of the signer of the X.509 certificate offered by the client.
keyword
zeek.ssl.client.issuer.country
Country code of the signer of the X.509 certificate offered by the client.
keyword
zeek.ssl.client.issuer.locality
Locality of the signer of the X.509 certificate offered by the client.
keyword
zeek.ssl.client.issuer.organization
Organization of the signer of the X.509 certificate offered by the client.
keyword
zeek.ssl.client.issuer.organizational_unit
Organizational unit of the signer of the X.509 certificate offered by the client.
keyword
zeek.ssl.client.issuer.state
State or province name of the signer of the X.509 certificate offered by the client.
keyword
zeek.ssl.client.subject.common_name
Common name of the X.509 certificate offered by the client.
keyword
zeek.ssl.client.subject.country
Country code of the X.509 certificate offered by the client.
keyword
zeek.ssl.client.subject.locality
Locality of the X.509 certificate offered by the client.
keyword
zeek.ssl.client.subject.organization
Organization of the X.509 certificate offered by the client.
keyword
zeek.ssl.client.subject.organizational_unit
Organizational unit of the X.509 certificate offered by the client.
keyword
zeek.ssl.client.subject.state
State or province name of the X.509 certificate offered by the client.
keyword
zeek.ssl.curve
Elliptic curve that was logged when using ECDH/ECDHE.
keyword
zeek.ssl.established
Flag to indicate if this ssl session has been established successfully.
boolean
zeek.ssl.last_alert
Last alert that was seen during the connection.
keyword
zeek.ssl.next_protocol
Next protocol the server chose using the application layer next protocol extension.
keyword
zeek.ssl.resumed
Flag to indicate if the session was resumed reusing the key material exchanged in an earlier connection.
boolean
zeek.ssl.server.cert_chain
Chain of certificates offered by the server to validate its complete signing chain.
keyword
zeek.ssl.server.cert_chain_fuids
An ordered vector of certificate file identifiers for the certificates offered by the server.
keyword
zeek.ssl.server.issuer.common_name
Common name of the signer of the X.509 certificate offered by the server.
keyword
zeek.ssl.server.issuer.country
Country code of the signer of the X.509 certificate offered by the server.
keyword
zeek.ssl.server.issuer.locality
Locality of the signer of the X.509 certificate offered by the server.
keyword
zeek.ssl.server.issuer.organization
Organization of the signer of the X.509 certificate offered by the server.
keyword
zeek.ssl.server.issuer.organizational_unit
Organizational unit of the signer of the X.509 certificate offered by the server.
keyword
zeek.ssl.server.issuer.state
State or province name of the signer of the X.509 certificate offered by the server.
keyword
zeek.ssl.server.name
Value of the Server Name Indicator SSL/TLS extension. It indicates the server name that the client was requesting.
keyword
zeek.ssl.server.subject.common_name
Common name of the X.509 certificate offered by the server.
keyword
zeek.ssl.server.subject.country
Country code of the X.509 certificate offered by the server.
keyword
zeek.ssl.server.subject.locality
Locality of the X.509 certificate offered by the server.
keyword
zeek.ssl.server.subject.organization
Organization of the X.509 certificate offered by the server.
keyword
zeek.ssl.server.subject.organizational_unit
Organizational unit of the X.509 certificate offered by the server.
keyword
zeek.ssl.server.subject.state
State or province name of the X.509 certificate offered by the server.
keyword
zeek.ssl.validation.code
Result of certificate validation for this connection, given as OpenSSL validation code.
keyword
zeek.ssl.validation.status
Result of certificate validation for this connection.
keyword
zeek.ssl.version
SSL/TLS version that was logged.
keyword

stats

The stats dataset collects the Zeek stats.log file, which contains memory/event/packet/lag statistics.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
tags
List of keywords used to tag each event.
keyword
zeek.session_id
A unique identifier of the session
keyword
zeek.stats.bytes.received
Number of bytes received since the last stats interval if reading live traffic.
long
zeek.stats.connections.icmp.active
ICMP connections currently in memory.
integer
zeek.stats.connections.icmp.count
ICMP connections seen since last stats interval.
integer
zeek.stats.connections.tcp.active
TCP connections currently in memory.
integer
zeek.stats.connections.tcp.count
TCP connections seen since last stats interval.
integer
zeek.stats.connections.udp.active
UDP connections currently in memory.
integer
zeek.stats.connections.udp.count
UDP connections seen since last stats interval.
integer
zeek.stats.dns_requests.active
Current number of DNS requests awaiting a reply.
integer
zeek.stats.dns_requests.count
Number of DNS requests seen since last stats interval.
integer
zeek.stats.events.processed
Number of events processed since the last stats interval.
integer
zeek.stats.events.queued
Number of events that have been queued since the last stats interval.
integer
zeek.stats.files.active
Current number of files actively being seen.
integer
zeek.stats.files.count
Number of files seen since last stats interval.
integer
zeek.stats.memory
Amount of memory currently in use in MB.
integer
zeek.stats.packets.dropped
Number of packets dropped since the last stats interval if reading live traffic.
long
zeek.stats.packets.processed
Number of packets processed since the last stats interval.
long
zeek.stats.packets.received
Number of packets seen on the link since the last stats interval if reading live traffic.
long
zeek.stats.peer
Peer that generated this log. Mostly for clusters.
keyword
zeek.stats.reassembly_size.file
Current size of File data in reassembly.
integer
zeek.stats.reassembly_size.frag
Current size of packet fragment data in reassembly.
integer
zeek.stats.reassembly_size.tcp
Current size of TCP data in reassembly.
integer
zeek.stats.reassembly_size.unknown
Current size of unknown data in reassembly (this is only PIA buffer right now).
integer
zeek.stats.timers.active
Current number of scheduled timers.
integer
zeek.stats.timers.count
Number of timers scheduled since last stats interval.
integer
zeek.stats.timestamp_lag
Lag between the wall clock and packet timestamps if reading live traffic.
integer

syslog

The syslog dataset collects the Zeek syslog.log file which contains syslog messages.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
log.syslog.facility.name
The Syslog text-based facility of the log event, if available.
keyword
log.syslog.severity.name
The Syslog numeric severity of the log event, if available. If the event source publishing via Syslog provides a different severity value (e.g. firewall, IDS), your source's text severity should go to log.level. If the event source does not specify a distinct severity, you can optionally copy the Syslog severity to log.level.
keyword
message
For log events the message field contains the log message, optimized for viewing in a log viewer. For structured logs without an original message field, other fields can be concatenated to form a human-readable summary of the event. If multiple messages exist, they can be combined into one message.
match_only_text
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.session_id
A unique identifier of the session
keyword
zeek.syslog.facility
Syslog facility for the message.
keyword
zeek.syslog.msg
The plain text message.
keyword
zeek.syslog.severity
Syslog severity for the message.
keyword

traceroute

The traceroute dataset collects the Zeek traceroute.log file, which contains traceroute detections.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
tags
List of keywords used to tag each event.
keyword
zeek.session_id
A unique identifier of the session
keyword

tunnel

The tunnel dataset collects the Zeek tunnel.log file, which contains tunneling protocol events.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
related.ip
All of the IPs seen on your event.
ip
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.session_id
A unique identifier of the session
keyword
zeek.tunnel.action
The type of activity that occurred.
keyword
zeek.tunnel.type
The type of tunnel.
keyword

weird

The weird dataset collects the Zeek weird.log file, which contains unexpected network-level activity.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
destination.address
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
destination.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
destination.as.organization.name
Organization name.
keyword
destination.as.organization.name.text
Multi-field of destination.as.organization.name.
match_only_text
destination.geo.city_name
City name.
keyword
destination.geo.continent_name
Name of the continent.
keyword
destination.geo.country_iso_code
Country ISO code.
keyword
destination.geo.country_name
Country name.
keyword
destination.geo.location
Longitude and latitude.
geo_point
destination.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
destination.geo.region_iso_code
Region ISO code.
keyword
destination.geo.region_name
Region name.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
related.ip
All of the IPs seen on your event.
ip
rule.name
The name of the rule or signature generating the event.
keyword
source.address
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the .address field. Then it should be duplicated to .ip or .domain, depending on which one it is.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
zeek.session_id
A unique identifier of the session
keyword
zeek.weird.additional_info
Additional information accompanying the weird if any.
keyword
zeek.weird.identifier
This field is to be provided when a weird is generated for the purpose of deduplicating weirds. The identifier string should be unique for a single instance of the weird. This field is used to define when a weird is conceptually a duplicate of a previous weird.
keyword
zeek.weird.name
The name of the weird that occurred.
keyword
zeek.weird.notice
Indicate if this weird was also turned into a notice.
boolean
zeek.weird.peer
The peer that originated this weird. This is helpful in cluster deployments if a particular cluster node is having trouble to help identify which node is having trouble.
keyword

x509

The x509 dataset collects the Zeek x509.log file, which contains X.509 certificate info.

Exported fields

FieldDescriptionType
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host, resource, or service is located.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host, resource, or service is located.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
The field can contain anything that makes sense to signify the source of the data. Examples include nginx.access, prometheus, endpoint etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. event.dataset should have the same value as data_stream.dataset. Beyond the Elasticsearch data stream naming criteria noted above, the dataset value has additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.namespace
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with default. If no value is used, it falls back to default. Beyond the Elasticsearch index naming criteria noted above, namespace value has the additional restrictions: * Must not contain - * No longer than 100 characters
constant_keyword
data_stream.type
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
constant_keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset
constant_keyword
event.id
Unique ID to describe the event.
keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data is coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
file.x509.alternative_names
List of subject alternative names (SAN). Name types vary by certificate authority and certificate type but commonly contain IP addresses, DNS names (and wildcards), and email addresses.
keyword
file.x509.issuer.common_name
List of common name (CN) of issuing certificate authority.
keyword
file.x509.issuer.country
List of country (C) codes
keyword
file.x509.issuer.distinguished_name
Distinguished name (DN) of issuing certificate authority.
keyword
file.x509.issuer.locality
List of locality names (L)
keyword
file.x509.issuer.organization
List of organizations (O) of issuing certificate authority.
keyword
file.x509.issuer.organizational_unit
List of organizational units (OU) of issuing certificate authority.
keyword
file.x509.issuer.state_or_province
List of state or province names (ST, S, or P)
keyword
file.x509.not_after
Time at which the certificate is no longer considered valid.
date
file.x509.not_before
Time at which the certificate is first considered valid.
date
file.x509.public_key_algorithm
Algorithm used to generate the public key.
keyword
file.x509.public_key_curve
The curve used by the elliptic curve public key algorithm. This is algorithm specific.
keyword
file.x509.public_key_exponent
Exponent used to derive the public key. This is algorithm specific.
long
file.x509.public_key_size
The size of the public key space in bits.
long
file.x509.serial_number
Unique serial number issued by the certificate authority. For consistency, if this value is alphanumeric, it should be formatted without colons and uppercase characters.
keyword
file.x509.signature_algorithm
Identifier for certificate signature algorithm. We recommend using names found in Go Lang Crypto library. See https://github.com/golang/go/blob/go1.14/src/crypto/x509/x509.go#L337-L353.
keyword
file.x509.subject.common_name
List of common names (CN) of subject.
keyword
file.x509.subject.country
List of country (C) code
keyword
file.x509.subject.distinguished_name
Distinguished name (DN) of the certificate subject entity.
keyword
file.x509.subject.locality
List of locality names (L)
keyword
file.x509.subject.organization
List of organizations (O) of subject.
keyword
file.x509.subject.organizational_unit
List of organizational units (OU) of subject.
keyword
file.x509.subject.state_or_province
List of state or province names (ST, S, or P)
keyword
file.x509.version_number
Version of x509 format.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name (FQDN), or a name specified by the user. The recommended value is the lowercase FQDN of the host.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.flags
Flags for the log file.
keyword
log.offset
Offset of the entry in the log file.
long
tags
List of keywords used to tag each event.
keyword
zeek.session_id
A unique identifier of the session
keyword
zeek.x509.basic_constraints.certificate_authority
CA flag set or not.
boolean
zeek.x509.basic_constraints.path_length
Maximum path length.
integer
zeek.x509.certificate.common_name
Last (most specific) common name.
keyword
zeek.x509.certificate.curve
Curve, if EC-certificate.
keyword
zeek.x509.certificate.exponent
Exponent, if RSA-certificate.
keyword
zeek.x509.certificate.issuer.common_name
Common name provided in the certificate issuer field.
keyword
zeek.x509.certificate.issuer.country
Country provided in the certificate issuer field.
keyword
zeek.x509.certificate.issuer.locality
Locality provided in the certificate issuer field.
keyword
zeek.x509.certificate.issuer.organization
Organization provided in the certificate issuer field.
keyword
zeek.x509.certificate.issuer.organizational_unit
Organizational unit provided in the certificate issuer field.
keyword
zeek.x509.certificate.issuer.state
State or province provided in the certificate issuer field.
keyword
zeek.x509.certificate.key.algorithm
Name of the key algorithm.
keyword
zeek.x509.certificate.key.length
Key length in bits.
integer
zeek.x509.certificate.key.type
Key type, if key parseable by openssl (either rsa, dsa or ec).
keyword
zeek.x509.certificate.serial
Serial number.
keyword
zeek.x509.certificate.signature_algorithm
Name of the signature algorithm.
keyword
zeek.x509.certificate.subject.common_name
Common name provided in the certificate subject.
keyword
zeek.x509.certificate.subject.country
Country provided in the certificate subject.
keyword
zeek.x509.certificate.subject.locality
Locality provided in the certificate subject.
keyword
zeek.x509.certificate.subject.organization
Organization provided in the certificate subject.
keyword
zeek.x509.certificate.subject.organizational_unit
Organizational unit provided in the certificate subject.
keyword
zeek.x509.certificate.subject.state
State or province provided in the certificate subject.
keyword
zeek.x509.certificate.valid.from
Timestamp before when certificate is not valid.
date
zeek.x509.certificate.valid.until
Timestamp after when certificate is not valid.
date
zeek.x509.certificate.version
Version number.
integer
zeek.x509.id
File id of this certificate.
keyword
zeek.x509.log_cert
Present if policy/protocols/ssl/log-hostcerts-only.bro is loaded Logging of certificate is suppressed if set to F.
boolean
zeek.x509.san.dns
List of DNS entries in SAN.
keyword
zeek.x509.san.email
List of email entries in SAN.
keyword
zeek.x509.san.ip
List of IP entries in SAN.
ip
zeek.x509.san.other_fields
True if the certificate contained other, not recognized or parsed name fields.
boolean
zeek.x509.san.uri
List of URI entries in SAN.
keyword

Changelog

VersionDetailsKibana version(s)

2.24.1

Bug fix View pull request
Add null checks to date processors in ntp pipeline.

8.12.0 or higher

2.24.0

Enhancement View pull request
Update package-spec to 3.0.3.

8.12.0 or higher

2.23.0

Enhancement View pull request
Set sensitive values as secret.

8.12.0 or higher

2.22.4

Bug fix View pull request
Prevent null dereference exceptions for missing fields.

Bug fix View pull request
Improve case-insensitive string comparisons.

Bug fix View pull request
Clean up multi-line syntax in ingest pipelines.

8.7.1 or higher

2.22.3

Bug fix View pull request
Fix ingest pipeline conditional field handling.

8.7.1 or higher

2.22.2

Enhancement View pull request
Changed owners

8.7.1 or higher

2.22.1

Bug fix View pull request
Fix exclude_files pattern.

8.7.1 or higher

2.22.0

Enhancement View pull request
Limit request tracer log count to five.

8.7.1 or higher

2.21.0

Enhancement View pull request
ECS version updated to 8.11.0.

8.7.1 or higher

2.20.0

Enhancement View pull request
Improve 'event.original' check to avoid errors if set.

8.7.1 or higher

2.19.1

Bug fix View pull request
Fix mapping of dns.answers

8.7.1 or higher

2.19.0

Enhancement View pull request
Use dynamic mappings for object fields.

8.7.1 or higher

2.18.0

Enhancement View pull request
Modified the field definitions to reference ECS where possible and remove invalid field attributes.

8.7.1 or higher

2.17.0

Enhancement View pull request
ECS version updated to 8.10.0.

8.7.1 or higher

2.16.0

Enhancement View pull request
The format_version in the package manifest changed from 2.11.0 to 3.0.0. Removed dotted YAML keys from package manifest. Added 'owner.type: elastic' to package manifest.

8.7.1 or higher

2.15.0

Enhancement View pull request
Add tags.yml file so that integration's dashboards and saved searches are tagged with "Security Solution" and displayed in the Security Solution UI.

8.7.1 or higher

2.14.1

Bug fix View pull request
Fix template snippet escaping.

Bug fix View pull request
Fix event.type for error in sip data stream.

8.7.1 or higher

2.14.0

Enhancement View pull request
Update package-spec to 2.10.0.

8.7.1 or higher

2.13.0

Enhancement View pull request
Add support for HTTP request tracing.

8.7.1 or higher

2.12.0

Enhancement View pull request
Update package to ECS 8.9.0.

8.7.1 or higher

2.11.2

Bug fix View pull request
Add missing processors support for dhcp and smb_mapping logs.

Bug fix View pull request
Fix documentation link for processors.

8.7.1 or higher

2.11.1

Bug fix View pull request
Fix handling of zeek HTTP host when the URI contains a domain.

8.7.1 or higher

2.11.0

Enhancement View pull request
Convert visualizations to lens.

8.7.1 or higher

2.10.0

Enhancement View pull request
Ensure event.kind is correctly set for pipeline errors.

8.1.0 or higher

2.9.0

Enhancement View pull request
Update package to ECS 8.8.0.

8.1.0 or higher

2.8.0

Enhancement View pull request
Update package to ECS 8.7.0.

8.1.0 or higher

2.7.1

Enhancement View pull request
Added categories and/or subcategories.

8.1.0 or higher

2.7.0

Enhancement View pull request
Update package to ECS 8.6.0.

8.1.0 or higher

2.6.1

Enhancement View pull request
Migrate the visualizations to by value in dashboards to minimize the saved object clutter and reduce time to load

8.1.0 or higher

2.6.0

Enhancement View pull request
Update package to ECS 8.5.0.

8.0.0 or higher

2.5.2

Enhancement View pull request
Remove duplicate field.

8.0.0 or higher

2.5.1

Enhancement View pull request
Use ECS geo.location definition.

8.0.0 or higher

2.5.0

Enhancement View pull request
Add threat.indicator handling

8.0.0 or higher

2.4.1

Enhancement View pull request
Remove unused visualizations

8.0.0 or higher

2.4.0

Enhancement View pull request
Update package to ECS 8.4.0

8.0.0 or higher

2.3.1

Enhancement View pull request
Update package name and description to align with standard wording

8.0.0 or higher

2.3.0

Enhancement View pull request
Update package to ECS 8.3.0.

8.0.0 or higher

2.2.0

Enhancement View pull request
Add new data sets for known_hosts, known_certs, known_services, & software logs files.

2.1.0

Enhancement View pull request
Add JA3/JA3S parsing & fix certificate data parsing; hash, not valid before/after timestamps

8.0.0 or higher

2.0.0

Bug fix View pull request
Migrate map visualisation from tile_map to map object

8.0.0 or higher

1.9.0

Enhancement View pull request
Add message field to zeek.syslog datastream

Bug fix View pull request
Fix field definition for zeek.syslog.msg

1.8.0

Bug fix View pull request
Make sure field values are valid for ECS

7.14.0 or higher
8.0.0 or higher

1.7.0

Enhancement View pull request
Update to ECS 8.2

1.6.1

Enhancement View pull request
Add documentation for multi-fields

7.14.0 or higher
8.0.0 or higher

1.6.0

Enhancement View pull request
Update to ECS 8.0

7.14.0 or higher
8.0.0 or higher

1.5.4

Bug fix View pull request
Remove redundant event.ingested from Zeek pipelines.

7.14.0 or higher
8.0.0 or higher

1.5.3

Bug fix View pull request
Ignore URI parse failures in zeek.http data.

1.5.2

Bug fix View pull request
Regenerate test files using the new GeoIP database

7.14.0 or higher
8.0.0 or higher

1.5.1

Bug fix View pull request
Change test public IPs to the supported subset

1.5.0

Enhancement View pull request
Add 8.0.0 version constraint

7.14.0 or higher
8.0.0 or higher

1.4.3

Enhancement View pull request
Uniform with guidelines

7.14.0 or higher

1.4.2

Enhancement View pull request
Update Title and Description.

1.4.1

Bug fix View pull request
Fix logic that checks for the 'forwarded' tag

1.4.0

Enhancement View pull request
Update to ECS 1.12.0

1.3.0

Enhancement View pull request
Add Sigature and NTP data streams

7.14.0 or higher

1.2.2

Enhancement View pull request
Convert to generated ECS fields

1.2.1

Enhancement View pull request
update to ECS 1.11.0

1.2.0

Enhancement View pull request
Update documentation to fit mdx spec

1.1.0

Enhancement View pull request
Update integration description

1.0.0

Enhancement View pull request
make GA

Enhancement View pull request
Set "event.module" and "event.dataset"

7.14.0 or higher

0.8.4

Enhancement View pull request
Add support for Splunk authorization tokens

0.8.3

Bug fix View pull request
Fix Third Party Api ingest pipeline

0.8.2

Enhancement View pull request
Use wildcard field type.

0.8.1

Enhancement View pull request
Add support for ISO8601 timestamps

0.8.0

Enhancement View pull request
Update to ECS 1.10.0, adding processor fields and replacing default tags from . to - between words.

0.7.4

Enhancement View pull request
Add system test for httpjson Splunk input.

0.7.3

Enhancement View pull request
Make event.original optional

0.7.2

Bug fix View pull request
adding back 0.7.0 changes

0.7.1

Bug fix View pull request
rolling back to 0.6.0 changes for compatibility with 7.12

0.7.0

Enhancement View pull request
moving edge processing to ingest pipeline

0.6.1

Enhancement View pull request
update to ECS 1.9.0

0.1.0

Enhancement View pull request
initial release

On this page